
SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 1

Software Confidence. Achieved.

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Risk Based Security Testing
Improving Your Test Strategy to

Expose Security Issues

www.cigital.com
paco@cigital.com
+44 7985 419 802

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Course Objectives
  At the end of this course, you will

  Learn the role of security in the test strategy
and test planning process

  Map tests to risks in a traceability matrix
  Identify security testing activities that fit into

ordinary testing activities

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 2

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Agenda
  Part 1: Software Security Testing
  Part 2: Starting Risk-Based Security Testing
  Part 3: Adding Risk-Based Security Testing
  Part 4: Conclusion

March 2012 ©2012 Cigital, Inc. All Rights Reserved

  An overview of software security testing
  Don't blow up what you do, just build on it

Part 1 – Software Security Testing

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 3

March 2012 ©2012 Cigital, Inc. All Rights Reserved

What is Software Security Testing?
  A risk-based, white-box approach to assessing software security
  Inputs are:

  Business and design objectives
  The actual requirements
  Architectural and operational reality
  The current and near-future capabilities of potential attackers

(threat model)
  The code

  Outputs are:
  Evidence that software security risks introduced in the software

development lifecycle have been effectively mitigated
  Evidence that software does what it is supposed to do and

nothing else
  Evidence that the software will withstand malicious attack

March 2012 ©2012 Cigital, Inc. All Rights Reserved

What Are You Trying to Protect?
  The valuable properties of anything considered an asset

  Data – CIA, privacy, accountability
  Time – Launch delay, processing delay, etc.
  Money – can't make sales, can't process transactions
  Reputation and Brand – loss of trust
  Legal – compliance, contractual regulation

£ $ ¥ €

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 4

Two Broad Classes of Security Defects

Implementation Bugs
  Localised to specific bits of

code
  SQL Injection
  Buffer overflow
  Cross-site scripting
  Unsafe system calls

Architectural Flaws
  Inappropriate trust of third

party systems
  Session management
  Concurrency and

transaction issues
  Broken or illogical access

control (RBAC over tiers)

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Flavors of Software Security Testing

Functional Security Testing
  Test the security-related

features of the system
  Ensure they behave in

the prescribed manner
(e.g., login features)

Risk-Based Security Testing
  Testing non-functional and

negative requirements
(misuse and abuse cases)

  Ensure security goals are
met

  Ensure security risks
introduced during software
development have been
effectively mitigated

March 2012 ©2012 Cigital, Inc. All Rights Reserved

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 5

Black-box vs. White-box Testing

Black Box
  Treats the system as

being opaque
  No knowledge of the

internal structure
  Usually focuses on

testing functional
requirements

White Box
  Allows full internal

knowledge
  Uses this knowledge to

construct tests and test
data

  Uses this knowledge to
judge whether something
is actually a flaw

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Testing Security Functionality
  Often the only type of security

testing that QA organizations
perform

  Based on written security
requirements and associated
application security features

  Remember, testing security
functionality can be tricky!
  Add negative test cases
  Anticipate how attackers might

exploit security features

Examples:
  When testing “encrypt file,”

also test whether the
encryption key is overwritten

  When testing that a “random
number” is generated, also
test how random it is

  When testing that “add read
access” allows a user to read
a file, also test whether it
allows write access too

March 2012 ©2012 Cigital, Inc. All Rights Reserved

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 6

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Risk-Based Security Testing
  Testing focused on whether identified risks have been

appropriately mitigated
  Concentrate on what you're told “you can't do”

  Identified and prioritized risks come from
  Architectural risk analysis – artifact analysis usually done

by development security architects or external consulting
groups

  Abuse cases, attack patterns, and threat model
  Informed red-teaming

  Risk-based security testing must use this information and
plan, test, and help mitigate these risks

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Defining What Security Means for You
  Functional testing requires a definition of what

the software must do
  These are your requirements

  Security testing requires a definition of what
“secure” is for your system
  Allows us to test “secure” or “not secure”
  These are your security requirements

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 7

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Non-functional Requirements
  Auditability
  Extensibility
  Maintainability
  Performance
  Portability
  Reliability
  Security
  Testability
  Usability
  etc.

Example Non-Functional Requirements
  The system shall run on Windows

XP, Windows Vista, and MacOS X
10.5

  User logins will take at most 20
seconds from submitting
credentials to seeing first screen.

  The system will require less than
10 Mbs network speed to handle
100 concurrent users.

March 2012 ©2012 Cigital, Inc. All Rights Reserved

New and Old Vocabulary
  Functional security requirement

  A condition or capability needed in the
system to control or limit the fulfillment of
requirements

  Non-functional security requirement
  A property of the system required to ensure

fulfillment of requirements in the face of
abuse or misuse

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 8

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Security non-functional Requirements
  Audit logs shall be verbose enough to support forensics

  All account modification events shall be logged. The
event log shall contain date, time, user, action, object,
prior value, new value

  Audit logs shall have integrity protection...

  Application use of credit card data shall be PCI compliant.
e.g. PCI 3.3:
  Mask Primary Account Number (PAN) when displayed

(the first six and last four digits are the maximum number
of digits to be displayed).

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Deriving Security Requirements
  App Req 1: All accounts have passwords
  App Req 2: 3 bad attempts == account lock

  Implication: Bad guy can DoS the App
  Try every account 3 times
  All accounts locked

  Derived requirement:
  Accounts should unlock after 5 minutes of no

attempts
  eBay attack

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 9

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Thinking backwards
  Think of abuse cases and misuse cases as “backward” use cases
  Consider grammatical negation
  Start with use cases

  Think about what a system does
  Continue at increasing levels of detail

  Once you know what a system does, look at it from the adversary's
perspective.
  How can they disrupt the system?
  How can they profit from the system?

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Anticipating Attacks
  Scenario:

1.  Receive contact info via SMS
2.  Confirm acceptance with handset user
3.  Add contact to address book

  What are some example requirements?
  How about security requirements?

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 10

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Contact Info via SMS
  Verify standard format (e.g., VCF)

  Verify required fields (if any)
  Reconstruct multiple SMS into single record
  (optional) Check for duplicate in address book

  It's still not good enough
  What will a bad guy do?

SMS-based Attacks
  Spam contacts (e.g.

"for great deals, call...")
  Display sender's info in

confirmation
  Allow immediate delete

  Field-based overflows
  Check length on all

strings before importing
  Truncate long inputs

  Out of order attacks
  Fragmentation,

ordering

  Character-set attacks
(UTF-8, UTF-16, etc.)
  Coerce character sets
  Discard unsupported

letters

March 2012 ©2012 Cigital, Inc. All Rights Reserved

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 11

Anti-requirements: a useful construct
  Requirements generally have the form:

 The system shall [do something] given [inputs]
  To develop an anti-requirement:

  Categorize the possible outcomes
  Rank in order of severity from perfect to worst
  Define a threshold – what outcomes are unacceptable
  Explore the inputs and determine the outcome associated with each
  Determine which are acceptable and which are not
  Associate each input and outcome

  This exploration of the requirements from an “anti” perspective allows you to
design security requirements to address unacceptable outcomes from the
code that implements a requirement

March 2012 ©2012 Cigital, Inc. All Rights Reserved

March 2012 ©2012 Cigital, Inc. All Rights Reserved

An example of “anti-requirements”

Consider Undesirable Outcomes
  Non-unique identified produced
  Identifier with incorrect validity

period
  etc.

Address undesirable outcomes in

order of business impact

Requirement: The system shall produce a unique identifier
valid for N days into the future given a time, an integer N,
and a valid authorization token where 0 < N ≤ 7

  Consider Inputs
 Time is negative
 N ≤ 0
 N > 7 etc.
 N is non-numeric
 etc.

  Map inputs to outcomes
Bad N = error
Bad time = error
Invalid auth = error
error = invalidate session

Formulate Positive REQUIREMENTS to mitigate unacceptable outcomes

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 12

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Recognizing Security Requirements
Bad examples:
  “Be secure”
  “Don't allow buffer overflows”

Slightly better
  “XYZ data should be cryptographically protected”
  “Strongly authenticate users”
  “Meet SOX regulatory guidelines for data protection”
  “Do not allow meta-characters in input fields”
  “Phone number fields only accept x, y, z…”

Pretty Good
  “All user input fields shall be limited to 100 ASCII characters.”
  “Personally Identifiable Information will not be used as primary keys in

databases.”

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Artifact Analysis

  Each phase reduces
defects

  Provides continuous
evaluation of
application readiness

  Optimizes test
planning

Sys Design
Architecture

System
Testing

Coding Subsystem
Testing

Design Integration
Testing

Business
Requirements

Acceptance
Testing

Rework/iteration
Exit/Entry Criteria

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 13

March 2012 ©2012 Cigital, Inc. All Rights Reserved

  The risk-based security testing process
  Assuming you're just getting started and you're

basically on your own
  We'll cover “if you already have stuff” later

Part 2: Getting Started with Risk-Based
Security Testing

March 2012 ©2012 Cigital, Inc. All Rights Reserved

How do I get this?

Where Do I Start?
  The basic RBST process:

1.  Use a list of security risks
•  Pull from earlier activities
•  Bootstrap if necessary

2.  Build test plan and strategy
3.  Execute tests

Artifacts:
- Requirements
- Use cases
- Designs
- Code
- …

Risk
Analysis

Risk
Lists

Test
Planning

Test
Execution

Test
Strategy

Test
Plans

Test
Results

Test
Strategy

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 14

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Risk-Based Security Testing Process

March 2012 ©2012 Cigital, Inc. All Rights Reserved v. 1.6.2

How To Get Started If You Have Nothing
  Learn from history

  Use security goals to inspire test cases
  Use guiding design principles to inspire test

cases
  Design tests to spot common vulnerabilities
  Common test types and methods
  Plan to classify identified defects

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 15

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Bootstrapping the RBST Process

Good Security Goals

Traditional CIA
Confidentiality
  limiting access and disclosure to
“the right people;”

  preventing access by or disclosure
to “the wrong people”

Integrity
  the trustworthiness of information

resources
  Authenticity of the origin of

information
Availability
  information systems provide access

to authorized users

Additional Concepts
  Auditability /

Accountability
  Monitoring / Logging
  Privacy
  Non-repudiation

March 2012 ©2012 Cigital, Inc. All Rights Reserved v. 1.6.2

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 16

Guiding Principles for Secure Design
1.  Secure the Weakest

Link
2.  Practice Defense in

Depth
3.  Fail Securely
4.  Follow the Principle of

Least Privilege
5.  Compartmentalize

6.  Keep It Simple
7.  Promote Privacy
8.  Remember that Hiding

Secrets is Hard
9.  Be Reluctant to Trust
10.  Assume Nothing

March 2012 ©2012 Cigital, Inc. All Rights Reserved

March 2012 ©2012 Cigital, Inc. All Rights Reserved

History of Common Mistakes
  Vulnerability Taxonomies

  Common Vulnerability Enumeration – http://cve.mitre.org
  Common Weakness Enumeration – http://cwe.mitre.org
  United States Computer Emergency Readiness Team (US-CERT)

 http://www.us-cert.gov
  Open Web Application Security Project (OWASP) Top 10

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
  Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors

(McGraw, Tsipenyuk, Chess) - http://www.fortify.com/vulncat
  19 Deadly Sins of Software Security, (Howard, LeBlanc, Viega)

  Attack Patterns
  Common Attack Pattern Enumeration and Classification - http://

capec.mitre.org
  Exploiting Software (Hoglund, McGraw)

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 17

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Common Methods For Security Testing
  Exploiting Software (Hoglund, McGraw)
  How To Break Software Security (Whittaker,

Thompson)
  How To Break Web Software (Andrews, Whittaker)
  Web Security Testing Cookbook (Hope, Walther)

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Online Security Mailing Lists
  Bugtraq - http://www.securityfocus.com/archive/1
  Full Disclosure – https://lists.grok.org.uk/mailman/

listinfo/full-disclosure
  Risks – http://www.risks.org
  SC-L – http://www.securecoding.org/list
  Security Tracker – http://www.securitytracker.com

  Constantly changing horizon
  Look up your own stuff!

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 18

Example Risk Classifications

Security Clasifications
Technology

Will the software product do what it needs to
do to fulfill the product requirements? Can we
make the vision work?

Schedule
Can the vision be made to work within the
market window?

Market
Does the market really want to buy the
product? Can the product be sold such that
the company is profitable?

Brand
Can the product fail in a way that damages the
brand?

Compliance
Does a product failure lead specifically to
statutory, regulatory, or other non-compliance

Business Classifications
Disclosure

The dissemination of information to an individual
who does not have proper authorization.

Deception
Risks that involve unauthorized change and
reception of malicious information stored on a
computer system or data exchanged between
computer systems.

Disruption
Where access to a computer system is
intentionally blocked as a result of an attack or
other malicious action. It is important to note that
in some cases performance degradation can be
as harmful as performance interruption.

Usurpation
Unauthorized access to system control functions.

March 2012 ©2012 Cigital, Inc. All Rights Reserved

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Putting It All Together

Security
Goals

Secure Design
Principles

Risk
Classifications

All provide “hints” for thinking about security
risks your software will be exposed to

Business Goals

Common
Mistakes

Online
Resource

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 19

March 2012 ©2012 Cigital, Inc. All Rights Reserved

  The risk-based security testing process
  Assuming you have some useful risk artifacts to

start with

Part 3 – Adding Risk-Based Security Testing

March 2012 ©2012 Cigital, Inc. All Rights Reserved v. 1.6.2

Integrating the RBST Process

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 20

March 2012 ©2012 Cigital, Inc. All Rights Reserved v. 1.6.2

Architectural Risks and Abuse Cases

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Main Application

Struts

View

Controller Model

Actions
And

FormsJSPs

ModelEnd User
Application
Database

LAN

LAN

Log

Logging Logging

Using Threat Models

  Show Assets
  List Threats (agents of malicious intent)
  Show Possible Attack Patterns

Asset

Asset

Asset

A

B

B

C

Threats
A – Application user, Internal user
B – Malicious Admin, attacker on

compromised host
C – Internal user, Attacker who's

compromised LAN

4

4

4

1 2

2

2

3
Attack Patterns
1 – Command injection
2 – Interposition
3 – File manipulation
4 – Direct DB manipulation

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 21

March 2012 ©2012 Cigital, Inc. All Rights Reserved v. 1.6.2

Using Architectural Risk Analysis Results
  Architectural Risk Analysis

identifies, documents, and
prioritizes possible defects in code,
such as:
  Misuse of cryptography
  Compartmentalization

problems in design
  Lack of consistent input

validation
  Invalid assumptions of trust
  Insecure or lack of auditing
  Lack of authentication or

session management on APIs
  And so on

  Will likely be narrative text or block
diagrams

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Using Abuse Cases
  May be simple

diagrams
  May be narrative

Details / How / What Conditions Protections

Delivery 1 Overflow filesystem path Device uses filesystem and
accepts file uploads

1.1 Attacker creates a file
with filename > 255 chars

Attacker uses operating
system that permits malicious
filenames

None

1.2 Attacker performs OBEX
push from attack device
(e.g., laptop)

Bluetooth is enabled,
attacker's device is paired, or
security is optional

Disable Bluetooth by default.
Don't allow OBEX push from
unpaired devices.

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 22

March 2012 ©2012 Cigital, Inc. All Rights Reserved

RBST Test
Plans

RBST
Strategy

Test Strategy and Planning Process

Abuse
Cases

Common
Mistakes
& Attack
Patterns

ARA
Risks

Security
Goals

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Expanding Test Strategy and Planning
  Test strategy and planning

  A formalized approach to determining where, when, and how testing
should be performed to maximize the impact of software testing

  A phased approach that includes requirements validation, test
strategy, and test planning

  Collect new artifacts
  Business and design objectives
  ARA results, abuse cases, prioritized list of risks, code, etc.
  Code component map, data flow diagrams, etc.

  Choose additional testing as driven by risk
  Basic security issues, security mechanisms, inter-component issues,

abuse cases, misuse cases, failure checking, assumptions, design
issues, other

  Building on current testing strategy, identify additional code areas or
properties that require testing

  Augment the existing test plan
  Build test cases the way you do now, but look at new things

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 23

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Requirements Validation Process

Abuse
Cases

Common
Mistakes
& Attack
Patterns

ARA
Risks

Security
Goals

RBST
Strategy

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Requirements Validation
  “Do we have the requirements right?”

  Review checklist
  Consistency – verify internal and external consistency between

requirements, assumptions and interactions are consistent, and
terms and concepts are used consistently

  Readability – verify documentation is easily read and well
formatted

  Testability – verify that there is objective acceptance criteria for
testing and teach requirement is clear, concise, unambiguous

  Coverage: ARA risks, threats, attack patterns, abuse cases, and
so on

  Account for security goals

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 24

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Test Strategy Process
Common
Mistakes
& Attack
Patterns

ARA
Risks

Abuse
Cases

Security
Goals

RBST
Strategy

Test Strategy
  A solid test strategy drives an effective

and efficient testing process

  Steps in the process
  Understand application criticality

and risks
  Including ARA prioritized risks and

abuse cases
  Analyze the integrity level

necessary for each system
component

  Identify the most effective testing
techniques for mitigating the
identified risks

  Determine the acceptance criteria
for each type of testing

  Test strategy content
  Overall description of application to

test
  Identified business priorities/needs

and associated risks
  Definition of specific testing

techniques that mitigate risks,
meet objectives, and effectively
test the application at appropriate
test levels (subsystem, integration,
system)

  Associated exit criteria for test
completeness based upon risk and
coverage

  Definition of test infrastructure
necessary to effectively test

  Overall test automation strategy

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Account for risks and attacks

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 25

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Test Planning Process
Common
Mistakes
& Attack
Patterns

ARA
Risks

Abuse
Cases

Security
Goals

RBST Test
Plan

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Test Planning
  Is driven by an overall test strategy

  Includes the following information:
  Overall description of system and objectives
  Test requirements and cases for each testing technique
  Information on supporting test infrastructure
  Information on supported test automation
  Detailed exit criteria for each testing technique
  Definition of test oracles for validating results
  AND: The risks we are trying to validate

  Remember: Test setup, test validation, and test teardown are often effective
areas on which to concentrate automation

  Account for abuse cases and attack patterns

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 26

March 2012 ©2012 Cigital, Inc. All Rights Reserved

What Are You Accomplishing?
  We exposed you to goals, principles, common errors, test types, architectural risk

analysis results, and abuse cases
  We talked about thinking like an attacker and open code, white-box testing
  We talked about the test planning process and how to take advantage of your new

knowledge

Test #1 Test #2 Test #3 Test #4 etc.
Risk #1 √ √
Risk #2 √ √ √
Risk #3 √ √
Risk #4 √
etc.

Risks in
your

system

highest	

risk	

Risk coverage per test
more coverage	

n  It was all so that you could draw that red box below – software security tests that
address real risks in your specific code, prioritized by coverage and resources

March 2012 ©2012 Cigital, Inc. All Rights Reserved

A New Kind of Traceability

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 27

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Who Does This?
  YOU!
  Functional security testing can be performed by

developers and traditional QA staff
  Risk-based software security testing is performed

by those with training
  Thinking like an attacker
  Crafting tests that may not result in an easily

observable result
  Crafting a series of tests, each relying on the

results of a previous test
  Follow the shiny object down the rat hole

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Think Like a Bad Guy, But Realize…
  Hackers have nothing but time to:

  Crack expensive testing apps and use them for free
  Tear apart your entire code base with a debugger,

disassembler, or decompiler
  Examine every register, environment setting, data

structure, variable, API, timing, state transition, etc.
  Crash the application a million times during fault injection

or fuzzing to maybe get one useful result
  Get five friends to help craft a test harness to try out

some bright idea
  Read every string in every binary

  You don't (have infinite time), so you have to:
  Change your mindset, but be practical
  Use internal (white-box) knowledge to stay ahead

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 28

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Who Are These “Bad Guys”?
  Hackers

  “Full disclosure” zealots
  “Script kiddies”

  Criminals
  Lone guns or organized

  Malicious insiders
  Competitors
  Police, press, terrorists, intelligence agencies

  Bad guys do not distinguish between bugs, flaws, defects,
coding errors, configuration errors, security lapses, network
vulnerabilities, or anything else

March 2012 ©2012 Cigital, Inc. All Rights Reserved

  What have we learned and what do we do now
  Bring this knowledge home and help it stick

Part 4 – Conclusion

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 29

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Tying it All Together

IV&R Buffer Overflow Command
Injection

XSS etc.

API Abuse Dangerous
Function

Heap Inspection Unchecked
Return Value

etc.

Sec. Features Insecure
Randomness

Missing Access
Control

Password
Management

etc.

Time & State Deadlock TOCTOU Insecure Temp
File

etc.

etc.

Attack Patterns	

K
i
n
g
d
o
m

Test #1 Test #2 Test #3 Test #4 etc.

Risk #1 √ √

Risk #2 √ √ √

Risk #3 √ √

Risk #4 √

etc.

Risks
in your
system	

highest	

risk	

Risk coverage per test	

more coverage	

Our	

Knowledge	

Your	

Process	

RBST Plan	

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Challenges in Adopting Software Security Testing
  Software security testing is most effectively performed by

QA as part of unit and integration testing, but
  People – may not have the baseline understanding of

security risks required to make testing effective
  Process – may not include important steps necessary

for determining software risk and security threats as part
of the strategy and planning process

  Technology – may not be familiar with or trained on
software security testing tools

  Integration – software development and security
organizations may not have mechanisms in place to
provide QA with the necessary risk information

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 30

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Know There Is Always More To Test
  The proverbial “Hello, World” J2ME application

could easily be running in, on, and around 50
million lines of framework, operating system,
firmware, and related software
  And the security posture of your code is likely

critically dependent upon all of it in one way or
another

  Expand your testing over time to account for
interactions and data flows with other
components

March 2012 ©2012 Cigital, Inc. All Rights Reserved

Books
Software Security McGraw

Exploiting Software Hoglund and McGraw
Building Secure Software Viega and McGraw

How to Break Web Software Andrews and Whittaker
How to Break Software Security Whittaker and Thompson

Exploiting Software Hoglund, McGraw
Shellcoder's Handbook Koziol, Litchfield, Aitel

Web Sites
Security Tracker http://www.SecurityTracker.com/

Risks Digest http://www.risks.org/
Phrack http://www.phrack.org/

Full Disclosure http://archives.neohapsis.com/archives/fulldisclosure/
US CERT http://www.us-cert.gov/

OWASP http://www.owasp.org/
Build Security In https://buildsecurityin.us-cert.gov/daisy/bsi/home.html

Bugtraq http://www.securityfocus.com/archive/1

Mailing Lists

Secure Coding http://www.securecoding.org/list

Motorola Courses

SCC1360 Introduction to Produce Security

SCC1327 Secure Programming

TSS009 Product Based Security Defense

Resources

SecAppDev 2012

©2012 Cigital, Inc. All Rights Reserved 31

Software Confidence. Achieved.

March 2012 ©2012 Cigital, Inc. All Rights Reserved

The best time to plant an�
oak tree was twenty years ago.�

�
The next best time is now.�

�—Ancient Proverb�

�

Paco Hope <paco@cigital.com>

